目的

当社は優秀な海外の理工系大学に先端教育を提供し、日本に就業を希望する優秀な学生を選抜し、最終的に日本企業に就業支援することを目的としております。

特長

講義概要は以下のとおりですが、学生とのQAやインタビュー、また実習型の講義から、個別に学生の個性を当社独自の指標で評価し、個別に学生だけでなく企業にもそれらの情報を匿名で公開し、企業と学生のマッチング支援も行います。

講座概要

講座の内容は、AI関連、半導体システム技術、ソフトウェア工学などの先端のIT関連の講座を軸に座学と実習の講座を提供しております。また、日本語の学習方法や就業後の情報なども講義対象になります。講師は当社の講師陣とグループ会社のARS Vietnamの講師陣、また特別講師にも一部の講座を委託しております。講座は1コマあたり90分です。講座の資料はすべて英文で、英語による講義となります。講義数は約50コマで、7月から11月の間に講義を展開します。

2024年7月に実施した講座一覧
"「日本での技術系ビジネスにおける日本語能力獲得の目的設定と方法」
"Goal setting and method for acquiring Japanese language skills in Technical business in Japan"
Overview of AI Technology Application
Overview of Semiconductor System Technology and Application
日本における組み込みシステム技術の応用事例
Application examples of embedded system technology in Japan
AI & Computer Vision applications
AI image recognition example
"「ベトナム日系IT関連企業の就業の実際」""The reality of working for Japanese IT companies in Vietnam"
Overview of Embedded System Technology and its Development Environment
An example of AI for Traffic Monitoring
Individual interviews, expectations for this education, and overall QA
講師は日本人
8月から11月に実施する講義の一部
Introduction
- Introduction to course, plan of the program
- Introduction to projects in ARS
Fundamentals of Software Development (session-1)
- Software Design (SD) Introduction: Software Development Life Cycle
Fundamentals of Software Development (session-2)
- Requriement Analysis: Role, Requirement modeling, understanding of Requirment specifications
Fundamentals of Software Development (session-3)
- Implementation: Coding style, Defensive Programming, Clean code
Object Oriented Program (OOP):
- Class and Object: Concept, Declaring (class, field, methods)
- Inheritance and Interface
Data structures and Algorithms (DS&A):
- Recursive algorithms, Backtracking algorithms
- Sorting: Insertion Sort, Selection Sort, Bubble Sort, Quick Sort, Heap Sort
Introduction to AI/ML (session-1)
- Definition of AI, types of AI
- Some concepts of ML and DL
Introduction to AI/ML (session-2)
- Some concepts of ML and DL (cont.)
- Process of AI development
Introduction to AI/ML (session-3)
- Process of AI development (cont.)
- Basic maths
Introduction to AI/ML (session-4)
- Types of ML: supervised, unsupervised, regression, classification…
- Supervised Learning: Linear Regression, Gradient Descent
Machine Learning (1):
- Basic Supervised-learning algorithms: Logistic regression
Machine Learning (2-1):
- Basic Supervised-learning algorithms: SVM, KNN, Decision Tree
- Practices
Machine Learning (2-2):
- Basic Unsupervised-learning algorithms: Clustering (Kmean, Spectral), Dimension reduction (PCA)
- Practices
Machine Learning (3):
- Neural Network (MLP, backpropagation)
Advanced ML techniques (1)
- K-Fold
- Bias vs Variance, Learning curves
- Model selection
Advanced ML techniques (2)
- Ensemble method
- Transfer learning
Computer Vision problem (1)
- Digital image (Concepts, Basic image processing algorithms)
Computer Vision problem (2)
- Digital image (Concepts, Basic image processing algorithms) (cont..)
- Practices
Computer Vision problem (3)
- Image classification with MNIST: NN on image data
Deep Learning (DL-1):- Convolutional Neural Nets (CNN)
Deep Learning (DL-1):
- Advanced CNN nets: Introduce other popular CNN nets: VGGs, ResNet, MobileNet
講師はすべてARS グループの幹部
11月の最終講義の概要
オリエンテーションとガイダンス
AI image recognition technology and business trends in Japan
AI image recognition technology and business trends im Vietnam
AI image recognition in practice
Issue assignments and conduct group learning
AI社会実現に向けた半導体デバイス概論
Practical application of AI application systems
「理系学生のための日本企業、日系企業の就業の実際と適合性確認」
“Confirmation of suitability and actual employment activity at Japanese companies for science & Technology students”
Group Hands-on training(1)
「日本での技術系ビジネスにおける日本語学習成果の要点と個人別問題点確認」
Group Hands-on training(2)
Group Presentation of Hands-on training(グループ発表と講評)
Review of the entire lecture and Q&A
Look back of the this courses and discuss next courses(ベトナム語での個人面談含む)
日本就業関連のQAと個人面談